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INTRODUCTION

With the use of adaptive methods to solve time-dependent partial differen-

tial equations, there exists a requirement to compute solutions on moving nonu-

niform grids. There is also a requirement to estimate the local discretization

error as feedback to modify or refine the mesh. In this report, we discuss the

MacCormack finite difference scheme and a Richardson extrapolation-based error

estimation procedure that was used in the adaptive algorithm of Arney (ref 1)

and Arney and Flaherty (refs 2,3) to solve time-dependent hyperbolic systems in "

one- and two-space dimensions. Examples of other adaptive methods with these

requirements are Rai and Anderson (ref 4), Adjerid and Flaherty (ref 5), Bell

and Shubin (ref 6), and Davis and Flaherty (ref 7).

Finite difference methods use a mapping to transform the time and space

variables from a moving nonuniform mesh to a stationary uniform mesh. The

method used to compute the metrics of this transformation must be carefully cho-

sen in order to preserve the stability, conservation, and accuracy of the scheme

(cf. Thomas and Lombard (refs 8,9) and Hindman (refs 10,11)).

The MacCormack finite difference scheme has had wide use in solving

Eulerian conservation laws for fluid dynamics. The recent use of artificial

viscosity to make this scheme total variation diminishing (TVD) makes it more

attractive as a general solver for problems with discontinuities (cf. Davis (ref N

(12) and Roe (13)). In the following section, we discuss the MacCormack scheme,

our implementation of the differencing of the metric terms, adaptive selection

of the time step, and the TVD artificial viscosity of Davis (ref 12). The

Richardson's extrapolation-based error estimation method produces a pointwise

approximation of the local discretization error which can be used to construct

References are listed at the end of this report.



several global measures of the discretization Grror. Next, we discuss our error %

estimate and its implementation on a moving mesh. Then we present computational

results of solutions of hyperbolic problems. Computations were performed in

one- and two-dimensions on stationary uniform and moving nonuniform grids.

Lastly, we discuss the utility of our methods, the computational results, and

future work.

SOLUTION SCHEME

Consider the hyperbolic vector systems of conservation laws in two-space

dimensions

ut + fx(x,y,u,t) + gy(x,y,u,t) = 0 , (x,y) e D, t > 0 (1)

u(x,y,O) = Uo(x,y), (x,y) e D U 8D, (2)

with appropriate well-posed conditions on the boundary 3D of a rectangular

domain D.

We chose to implement the MacCormack finite difference scheme for hyper-

bolic problems because of its general applicability. The MacCormack scheme,

like most higher-order methods, will suffer a reduction in order on a moving

nonuniform grid. Despite this fact, proper mesh moving and node placement by an "

effective adaptive procedure provide enough efficiency and accuracy to compen-

sate for this order reduction.

MacCormack Scheme

In order to discretize Eq. (1), we introduce a transformation

= (x,y,t), n = n(x,y,t), T = t, (3)

from the physical (x,y,t) domain to a computational (1,n,T) domain where a uni-

form rectangular grid will be used. Under this transformation, Eq. (1) becomes

UT + utt + unnt + fcx + fqnx + gty + gry = 0 (4)

2
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The transformation metrics (Cx,Cytt,nx,ny,nt) are related to the metrics

(XCXnXT~yynyT) by the identities

X = . ,nt: J (YX2_STYD) _ _Yt

=-' = J, t = ..... , x =-j- ,

=xx (yXT-XY T )
ny - = J = YnX - xnY(5)

Using Eq. (5) in Eq. (4) gives

--- -(yx -xY ) y -- - - + + X 0 (6)
UT + ;t ( ) -

This equation can be rewritten in another form in the original transformation
,1#

metrics by further substitutions of Eq. (5) into Eq. (2) as

UT - Ut(XTtx+YTy) - Un(XTnx+yTny) + fttX + fnnx + gty + gqny = 0 (7)

Some authors (cf. Hyman (ref 14) and Thompson (ref 15) prefer to write this V.

equation in still another form as

uT + -gt + unnt + f{tx + gy + gnny =0 (8)
S

A uniform space-time grid having mesh spacing At x An x AT is introduced

onto the computational domain. The finite difference solution at (M4 , mAn, ?

-n .
nAT) is referred to as ujm. A similar notation is used for the fluxes f and g

and the metrics in Eq. (5). The two-step MacCormack scheme (ref 16) uses first-

order forward temporal and spatial difference approximations in the predictor

step, and first-order backward differences in the corrector step. The predicted

-n+1
solution Im satisfies ft.tf

-n+1 -n AT -n -n n -n -n n
22'm = Im - I [(u+1,m-uIm)(Rt)Im + (fI+I'm-fjm)(x)i'm

+ n -n n AT -n -n n •
+ (gi+lm-gim)(Ry)I,m] - Z5 f(uI'm+1-UI'm)(qt)I'm

-n -n n -n -n n

+ (fi,m+l-fIm)(nx)im + (gim+1-gIm)(ny),m] (9).

3
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n
The metrics (x)1,m, etc. are computed by forward differences. The corrected

-n+1
solution uI,m satisfies

-n+1 1 -n -n+l AT -n+1 -n+1 n+1 -n+l -n+1 n+1 -

U,m = {U(,m + _Im - 1 ((Y,m-2-1,m)(Rt)im + (fm-f-1,m)(x)fm

+ n+1 -n+1 n+l AT -n+1 -n+1 n+1
+ ( ,m -lm)(y) m]- j [(3 ,m-i,m-1)(flt)I,m

n+l -n+1 n+1 -n+1 -n+1 n+1 ..
+ ( I,m-f,m-1)(x)i,m + (gi,m-i,m-1)(y)i,m]} (10)

-n+1
with metrics computed by backward differences. The notation fm denotes
-n+1

f(jj,m), etc. The use of first forward and backward difference approximations

for the metrics implies that the transformation from the computational to the

physical domain is piecewise trilinear in space and time for the predictor and

corrector steps. Such low order difference approximations are responsible for

reducing the orders of the MacCormack scheme. A smoother transformation and the

use of higher-order difference approximations of the metrics could be used to

maintain secord order accuracy.

It was shown by Hindman (refs 10,11) that this differencing of Eq. (6) pro- N

duces consistent approximations. Therefore, a uniform flow solution is main-

tained. Other conservative forms for the transformed equations were

investigated by Hindman (ref 10) and found to be less efficient or needing spe-

cial differencing of the metrics for computing consistent approximations. p

Equation (4) is conservative on a moving mesh. We show this for a one-

dimensional scalar conservation law by investigating the Rankine-Hugoniot jump

conditions across a shock discontinuity. Consider a conservation law in the

form

a (f u dx) + f(u)l = 0 (11)
t4

4-
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The jump conditions for a discontinuity at x = s(t) satisfy

Cu l (12)
(u]

where (q] indicates the jump in q, and s= s denotes the shock velocity (ref

17).

A conservation law on a moving mesh produced by a transformation of

Vp
variables to a uniform stationary mesh satisfies V

+ rt ) f uxtdt + f(u) = 0 (13)

T) -0 0

Assuming the existence of a shock discontinuity, { = r(T) gives

xu + f )Td + f (uxt)Td + f(u)J = 0 (14)
W r -00

Using the chain rule provides an integrable form

rxt[u* + fr (ux--f)df + J (uxr-f) dC + f(u)) = 0 (15) 8

Integration of this equation gives jump conditions in the computational domain

asV

rx [u] - +f] + xT.u] = 0 (16)

Since s(t) and r(T) are related by

s = r x + xT  (17)

the appropriate jump condition in Eq. (12) is recovered.

Variable Time Step

The explicit MacGormack scheme has a stability restriction that limits the

time step allowed for a given spatial mesh. For efficient computation, the time

step should be adaptively set close to the maximum allowed by the Courant, P

Friedrichs, Lewy theorem (ref 18) ,

N



AT (18)
2Y'2 max(w,,w)

The computational mesh has been selected to have spacing AC = An = 1 and the

constant 0.8 provides a 20 percent margin of safety. The quantities t and w are

the spectral radii of one-dimensional conservation laws on moving meshes, i.e.,

= max(Xi-XT)tX + (Pi-YT)Cy] (19a)

w = max[(Xi-XT)nX + (Pi-YT)ny] (19b)

where Xi and pi are eigenvalues of fu(u) and gu(u). These eigenvalues and the

metrics in Eqs. (19a) and (19b) are evaluated at the beginning of each time

step.

Artificial Viscosity

The MacCormack scheme, being a second order accurate centered scheme, pro-

duces spurious oscillations near discontinuities. In order to eliminate or

reduce these oscillations, artificial viscosity or dissipation is added to the

solution to diffuse the discontinuity. The viscosity is often problem-

dependent, and considerable "fine tuning" is usually needed to balance the

effects of the spurious oscillations and diffusion (ref 19).

We use an artificial viscosity model due to Davis (ref 12) which is not

problem-dependent and only requires knowledge of * and w. This artificial

viscosity model is designed to convert the MacCormack scheme into a total

variation diminishing (TVD) scheme in one-dimension. A scheme is TVD if the

total variation of the solution to an initial value problem is nonincreasing in 1%

time. Recent research efforts have resulted in the development of other second I

order accurate TVD schemes (cf. Osher and Chakravarthy (ref 20) and Warming and

Beam (ref 21)). 
.

.0
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The artificial viscosity of Davis (ref 12) is based on a flux limiter that J:

dosnot depend on explicitly determining the upwind direction and, with a

recent modification by Roe (ref 13), does not affect the region of stability of "

the MacCormack scheme. Because the MacCormack scheme also does not determine

the upwing direction, the combined use of the MacCormack scheme and Davis' arti-

ficial viscosity is computationally simpler to perform than many other TVD

schemes. The artificial viscosity terms are calculated from the solution data

at the beginning of the time step. For two-dimensional problems, separate

dissipative terms are calculated in the t and n directions, resepectively.

ERROR ESTIMATION

Accurate a posteriori error estimation is an integral part of an adaptive

software system. Error estimation can be the most expensive part of an adaptive

procedure and an important goal is to find accurate and inexpensive ways of

,.

estimating the discretization error (cf. Babuska, et al. (refs 22,23)). The a

error estimatin on expity detenntemany factors, including the type of

solver used in the algorithm, the type of error to be determined, and the norm

in which the error -stimate is to be measured. It is most desirable to have a
procedure that provides pointwise estimates of the error which can then be used

to find estimates in several local and global norms. .

Mesh nonuniformity affects the accuracy and convergence of numerical

schemes and error estimation. The effects of the mesh on the solution scheme

have been studied by Ciment (ref 24), Fritts (ref 25), Hoffman (ref 26), Osher.-

and Sanders (ref 27), Sanders (ref 28), and Mastin (ref 29). Error analysis

seems to be more natural and further developed for finite element schemes, espe-

cially for elliptic )d parabolic problems (cf. Adjerid and Faherty (refs 5,

30), Zienkiewicz et al. (refs 31,32), and Babuska and Rheinboldt (refs 33,34)),

N 3
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where relatively inexpensive local calculations are used to provide accurate

global spatial error estimates. More study needs to be done to find less expen-

sive and more accurate error estimates for finite difference schemes for hyper-

bolic problems.

We calculate the local temporal and spatial portions of the discretization

error, using an algorithm based on Richardson's extrapolation. Flaherty and =5

Moore (refs 35,36) and Berger and Oliger (ref 37) also use Richardson's extrapo-

lation to estimate error on uniform meshes for their local mesh refinement

algorithms.

Richardson's Extrapolation Error Estimation

We develop the error estimation for the second order MacCormack scheme for

a linear scalar problem in two dimensions. Separate pointwise estimates at a

t
general spatial node i, at time t, for the local temporal error Ei(t) and local

s ,
spatial error Ei(t) are obtained with two different extrapolation procedures.

Consider a uniform mesh with spacing Ax x Ay and time step At. Let the

exact solution at node i and time t be denoted as ui(t), the numerical solution

by the MacCormack scheme at the same point and time as Ui(t;Ax,Ay,At), and the

MacCormack finite difference operator as L(Ax,Ay,At), i.e.,

Ui(t+At;Ax,Ay,At) = L(Ax,Ay,At)Ui(t;Ax,Ay,At) (20)

Assume that the local error has a Taylor's series expansion of the form

ui(t) - Ui(t;Ax,Ay,At) = At[clAtz + c2Ax2 + c3AY
2 + ... 1 (21)

where the constants ci, c2 , c3 .... are independent of the mesh spacing.
...

To estimate the spatial component of the error, we calculate a solution on

a mesh of double spatial size (2Ax x 2Ay) with the same time step (At). The

local error on this mesh satisfies

ui(t+At) - Ui(t+At;2Ax,2Ay,At) = At[cjAt2 + 4c2Ax2 + 4c3AY2 + ... ] (22)

8
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Subtracting Eq. (22) from Eq. (21) and neglecting higher order terms, we "

obtain an expression for the leading term in the spatial portion of the local

error for the MacCormack scheme on the Ax x Ay x At mesh as
s
Ei(t+At):= At(c 2 Ax

2 + C3AY 2 ]

3 iUi(t+At;2Ax,2Ay,At) - Ui(t+At;Ax,Ay,At)] (23)

Similarly, an estimate of the temporal portion of the local error,
t

Ei(t+At), can be calculated by computing another solution on the Ax x Ay spatial

mesh using two time steps of At/2, subtracting this result from Eq. (21), and 0

retaining the leading order term as

t
Ei(t+At):= At(clAt2 ]

4 At= (Ui(t+4t;Ax,Ay,2(4-)) - Ui(t+&t;Ax,Ay,&t) ]  (24)

The leading term of the local error at node i and time t+At is
t s

Ei(t+At) = El(t+At) + Ei(t+At) (25)

There are several disadvantages to this technique that should be noted: (1)

the error cannot be calculated for nodes on or adjacent to the boundary; (2) the

solution must be smooth enough for the cl, c2 , and c3 to exist; (3) the error ®

.
estimation costs approximately three times more to compute than the solution; A

and (4) the mesh must be uniform. Equation (25) may still be useful as a mesh

refinement or motion indicator even in situations where jumps in the solution

render it invalid as an estimate of the error.

Richardson's extrapolation can be done in a more classic manner provided

that we are willing to forego separate spatial and temporal error estimates.

Thus, the error at node i in a solution on a mesh having spacing Ax x At is

estimated by calculating a second solution on a mesh with spacing Ax/2 using two

time steps of At/2. According to Eq. (22), the local error on this mesh

.9



satisfies

ui(t+At) - Ui(t+At;Ax/2,2(&t/2)) = At(C1At
2/4 + c2Ax

2/4 + ... ] (26)

Subtracting Eq. (26) from Eq. (22) and neglecting higher order terms, we

can obtain error estimates for either Ui(t+at;ax,at) or Ui(t+At;Ax/2,2(At/2)) 0

provided that node i is common to both meshes. Our adaptive method carries the

fine grid solution forward in time; thus, we estimate its error as

Ei(t+At) = h At(clht2+c2Ax
2 )

-& x At

= fUj(t+at; 4- 2(4-)) - Ui(t+&t;Ax,At)] (27)3 2 2

Using this procedure, the error can now be calculated at nodes adjacent to

boundaries. Even though this error estimate costs four times more to compute

than the solution, we only incur this overhead in the first time step. No addi-

tional cost is incurred if portions of the mesh have to be refined because the

solution on the refined mesh has already been computed and stored while esti-

mating the error for the coarser parent mesh.

Error Estimation for a Moving Nonuniform Mesh

Nonuniformity of the mesh changes the discretization error of the

MacCormack scheme. For simplicity, we will determine this error and analyze its

effects on the Richardson extrapolation error estimation using a linear scalar

problem in one-space dimension

ut + bux = 0 (28)

The local error for the MacCormack method on a one-dimensional moving nonu-

niform mesh is

b n+1 n
ui(t+At) Ui(t+At;Ax,At) = At[- (Axr -Axi)uxx

Atb 2 (1 x(-)uxx) + ClAt2 + c 2Ax
2] (29)

Axn N

10
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n n
where Ax1 and Axr are the mesh sizes on the left and right node i at time step

n+1 n+1
n, respectively, and Ax = max(Axr ,AxJ ). On the moving nonuniform mesh, both

J.
the temporal and spatial error components contain second order terms, whereas 1

the error on a uniform mesh is third order. The previous analysis can be used .

to show that the leading component of the temporal error is

t Axn+1
Ei(t+At):= At[- AtbZ(1- ------ )uxx]

Axn
IV

At 0
- 2[Ui(t+At;Ax,2(4-)) - Ui(t+At;Ax,At)] (30)

Calculation of the spatial portion of the error is more difficult since the '

temporal portion of the error does not cancel upon subtraction of solutions

calculated on two spatially different meshes. We overcome this difficulty and

also greatly simplify the procedure in two dimensions by constraining the mesh

to maintain double size increments for special nodes of the moving coarse mesh.
S

This constrained grid structure consists of a coarse mesh, shown with darker

lines in Figure 1, containing properly nested fine cells created by binary divi-

sion of the sides of the coarse cells, shown by lighter lines in Figure 1. The

vertices of the coarse cells are denoted as "independent moving nodes." Error

estimates are calculated for these nodes. The remaining nodes in the mesh of

Figure 1 are "dependent moving nodes" which must be moved to maintain the

constrained grid structure. A solution is computed for these "dependent moving

nodes," but no error estimate is obtained.

For the "independent moving nodes," the spatial error calculation can

proceed as for a uniform mesh; therefore, the local spatial error estimate is

s n+
Ei(t+At) = At[- (Axr X)uxx]

Ui(t+At;Ax,At) - Ui(t+At;2Ax,At) (31)

11'4



AL

Figure 1. Spatial structure of the moving coarse mesh (bold lines) with
embedded fine mesh (fine lines) used for the error estimation.

The above analysis extends directly to two dimensions; hence, we have a

Richardson extrapolation-based procedure of estimating error on a moving nonuni-

form grid. In practice, we test the need for local uniformity and, if found,

use formulas in Eqs. (23) through (25) to compute error estimates.

Error estimation for systems of equations involves the use of a vector norm

at node i and time (t). The examples in the following section use the maximum

norm, i.e.,

Ei(t) max I Eij(t)I (32)

1 4j 4 N

where N is the number of equations in the system and Eij(t) is the local error

estimate for the jth component of the solution vector at node i.

COMPUTATIONAL EXAMPLES

The solution and local error estimation procedures are applied to four

examples. In Example 1, we demonstrate the capability of the MacCormack scheme

with Davis' TVD artificial viscosity on a moving nonuniform mesh. In Example 2,

we investigate a one-dimensional problem using a modified form of the error

12
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estimate in Eqs. (27) and (28). Examples 3 and 4 illustrate the performance of

the error estimation procedure on a problem having a smooth solution and one

with a jump in the first derivative, respectively. We investigate the accuracy

and convergence of the local error estimator by determining an effectivity index N

IIEtll
e = Tle-- (33a)

at a fixed time t for several different meshes and different adaptive strate-

gies. Here e and E are the exact and estimated errors, respectively. The LI

norm,

IIEII1 := If Edxdy (33b)

is obtained by assuming E to be a piecewise constant function.

Example 1

Consider the initial-boundary value problem -

ut - yux + xuy = 0, t > 0, -1.2 4 x 4 1.2, -1.2 4 y 4 1.2 (34)
12 1

u(x,y,O) = (x - ) + 1.5y

1 - 16((x - ) + 1.5y2 ) , otherwiseL!
and

u(1.2,y,t) = u(-1.2,y,t) = u(x,-1.2,t) = u(x,1.2,t) = 0 (36) '

-t 0 if C < 0 -%
u(x,y,t) = -(37) .aL , if C) 0

where

2
C = 1 - 16((xcost + ysint - ) + 1.5(ycost - xsint)2 ) (38) '

Equations (37) and (38) represent a moving elliptical cone rotating coun-

terclockwise around the origin with period 2n. This problem was proposed as a

test problem by Gottlieb and Orszag (ref 38) and was used as a test problem in a

s4e
survey by McRae et al. (ref 39).

13



We show the sequence of meshes that were generated at t 2 o, 1.6, and 3.2

using the adaptive mesh moving method of Arney and Flaherty (ref 2) in Figures

2, 3, and 4, respectively. Arney and Flaherty's mesh moving method (ref 2) uti-

lizes the error estimates (see Error Estimation section of this report) to con-

centrate the mesh in the high-error region beneath the cone and to follow it as

it rotates. It also increases the accuracy of the solution and reduces oscilla-

tions in the wake following the cone. However, small oscillations are still

present. Next, we solve this problem with the same moving mesh technique by
S

using Davis' artificial viscosity (ref 12) with the MacCormack scheme. Surface

and contour plots of solutions with and without artificial viscosity are shown

in Figures 5 and 6. There is no artificial wake behind the cone when artificial

viscosity is used. However, the artificial viscosity slightly diffuses the

cone, widening its base and reducing its peak from 1.0 to 0.88.

Fi 2 In ii m f E le 1
I FI IF!IIltI i'IIF __14I I i
I! I :l I I
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Figure 2. Initial mesh for Example 1.
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Figure 3. Mesh of Example 1 at t =1.6. Nodes have moved with the
rotating cone.

Figure 4. Mesh of Example 1 at t =3.2. Nodes have moved with the
cone for one-half rotation.
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Figure 5. Contour plots of the solutions of Example I on a moving mesh
without artificial viscosity (left) and with artificial
viscosity (right) at t =3.2.

%.5.

Figure 6. Surface plots of the solutions of Example I on a moving mesh
without artificial viscosity (top) and with artificial
viscosity (bottom) at t a 3.2.
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Example 2

We consider an application of the direct Richardson's extrapolation error

estimation procedure, Eq. (28), to the one-dimensional linear scalar equation S

Ut + ux = 0, t > 0, 0 < x < 0.8 (39)

with initial and Dirichlet boundary conditions specified so that the exact solu-

tion is

u(x,t) = [1 - tan h 100 (x-t-0.2)] (40)

This solution is a relatively steep wave that moves at unit speed across the

domain.

We solved this problem for one time step on seven different uniform meshes

having N computational cells per time step in order to investigate accuracy and

convergence of the error estimate. Table I shows the results obtained from

these calculations.

TABLE I. EXACT AND ESTIMATED ERRORS FOR DIFFERENT MESH SIZES
FOR EXAMPLE 2

Exact Error Estimated Error Effectivity Ratio
At N lell1  IEI11  e

0.1 8 0.447 x 10- 2 0.351 x 10-1 7.60 .,?

0.05 16 0.234 x 102 0.132 x 10-1 5.55

0.025 32 0.106 x 10-2 0.236 x 10-2 2.22

0.0125 64 0.257 x 10-
3 0.138 x 10 -

3 0.54

0.00625 128 0.294 x 10-4 0.380 x 10-4 1.29

0.00312 256 0.303 x 10- s  0.453 x 10-s 1.49

0.00156 512 0.538 x 10-6 0.661 x 10-6 1.23

17
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We also solved this problem using Arney and Flaherty's adaptive local

refinement procedure (ref 3) on a base mesh having Ax = At =0.1 with a local

error tolerance of 1/128. The mesh created by the local refinement algorithm-

is shown in Figure 7 and the solutions computed at each base time step are shown

in Figure 8.

0.,20 0.40 0.60 0.90 1.00

Figure 7. Adaptive mesh of Example 2.
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Figure 8. Solutions at base time steps for the adaptive local rrefinement procedure of Example 2.

The adaptive composite mesh of Figure 7 shows a distinct pattern associated .,
with using the MacCormack scheme with our local refinement strategy. Spacious '

oscillations of the solution on the base mesh cause several levels of refinement .
which drastically reduce the base mesh spacing at the beginning of each base

time step. However, once these oscillations have been controlled, the need for""

refinement is reduced at the later stages of the adaptive procedure. This
situation could be alleviated by including an artificial viscosity model with
the MacCormack scheme. 
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Example 3

Consider the linear scalar hyperbolic differential equation

ut + 2Ux + 2 uy = 0, t > 0, 0.2 4 x 4 1.2, 0 > y 1 (41)

with initial conditions

u(x,y,O) = (1-tan h 3(x-0.+0.1)) (42) ,
2

and with Dirichlet boundary conditions specified so that the exact solution of

this problem is

u(x,y,t) = (1-tan h 3(x-O.1 -1.St+0.1)(43)
2

This solution is a smooth wave that moves at an angle of 45 degrees across

the domain. The problem was selected to show the convergence and accuracy of

Richardson's extrapolation error estimation procedure (Eqs. (28) and (29)). We

solve Eqs. (41) and (42) for one time step, At = 0.012, on eight different

meshes. The mesh strategy of each calculation is described as follows:

1. a stationary uniform (10 x 10) rectangular mesh

2. a stationary uniform (20 x 20) rectangular mesh

3. a stationary uniform (40 x 40) rectangular mesh

4. a stationary uniform (60 x 60) rectangular mesh

5. a stationary (40 x 40) mesh of nonuniform quadrilateral cells

6. a moving (20 x 20) mesh with uniform rectangles

7. a moving (20 x 20) mesh of nonuniform quadrilateral cells

8. a moving (40 x 40) mesh of nonuniform quadrilateral cells

Table II shows the results from these calculations by comparing the exact errors

and the effectivity indices for the eight strategies.
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TABLE II. EXACT AND ESTIMATED ERRORS FOR DIFFERENT MESH
STRATEGIES FOR EXAMPLE 3

Mesh Strategy Exact Error Estimaced Error Effectivity Ratio
(From Above) Ilell1  IIEII1  "

1 0.0111 0.0071 0.64

2 0.00370 0.00318 0.86

3 0.000942 0.000908 0.96

4 0.000367 0.000368 1.00

5 0.000399 0.000418 1.04

6 0.00136 0.00124 0.91ON

7 0.000411 0.000370 0.90

8 0.000167 0.000156 0.94

Strategies 1 through 4 show the convergence of the error estimates on uni-

form meshes as the number of nodes increases. These errors show a rate of con-

vergence of 0(AX2,Ay2 ) which is predicted in Eq. (21). Comparison cf the errors

of strategies 3 and 5 shows the error is cut in half by computing with a better IN

nonuniform stationary mesh. Further comparison of strategies 5 and 7 shows

another reduction of error by half when the mesh is properly moved. The nonuni-

formity of the mesh in strategies 5, 7, and 8 produces little change in the

effectivity of the error estimation. These nonuniform mesh comp'tations indi-

cate a convergence rate 0(Axl. 32,Ayl. 3 2 ).

Example 4

Consider the linear scalar hyperbolic differential equation .

ut + ux + 0.25uy = 0, t > 0, 0.2 < x 4 1.2, 0 < y < 1 (44)

21
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with initial conditions

0 if y < -4x + 1.2 N

u(x,y,O) = 0.8 if y > -4x + 1.6 (45) N.,

-8x - 2y + 3.2 , otherwise,

and with Oirichlet boundary conditions

0 if y - 0.25t < -4(x-t) + 1.2

u(x,y,O) = - , y - 0.25t > -4(x-t) + 1.6 (46)

-8(x-t) 2(y-0.25t) + 3.2, otherwise.

The solution of this problem is an oblique ramplike wave front that moves

at an angle of 14 degrees across the domain. The solution has a jump in its

first partial derivatives at the top and bottom edges of the wave front. we

expect some difficulty in estimating the error near locations where the deriva-

tives jump. In the region of the front itself, the gradient of the solution is

constant and there is no error in the solution or in the error estimate.

We solved this problem for one time step, At = 0.015, for the following six

mesh strategies:
1. a stationary uniform (12 x 12) rectangular mesh

2. a stationary uniform (24 x 24) rectangular mesh
3. a stationary uniform (48 x 48) rectangular mesh

4. a stationary uniform (64 x 64) rectangular mesh

4. a stationary unifor2(64 x 64) reshngf ual 

5. a stationary (24 x 24) mesh of nonuniform quadrilateral cells

6. a moving (24 x 24) mesh of nonuniform quadrilateral cells.

Table III shows the results of these strategies.

'2-
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TABLE III. EXACT AND ESTIMATED ERRORS FOR DIFFERENT MESH STRATEGIES FOR
EXAMPLE 4. THE ERROR ESTIMATE IS ACCURATE, BUT THE SOLUTION
APPEARS TO BE CONVERGING

Mesh Strategy Exact Error Estimated Error Effectivity Ratio
Nell1  NEli1  e

1 0.0058 0.0016 0.28

2 0.00275 0.00110 0.40

3 0.000866 0.000479 0.55

4 0.000400 0.000222 0.56

5 0.00144 0.00078 0.54

6 0.000720 0.000349 0.49

The results are once again as expected. The error estimate of this problem

with a jump in the derivative is not as accurate as the smooth solution of

Example 3. However, the error estimate still shows signs of converging to the

exact error in L1 for the uniform meshes of strategies 1 through 4. Once again,

the better nodal placement of the initial mesh by the mesh generator of Arney

(ref 1) reduces the error by half from a uniform mesh. Also, moving the mesh by

the method of Arney and Flaherty (ref 2) reduces the error by half again.

CONCLUSION

We have shown that MacCormack's finite difference scheme and error estima-

tion based on Richardson's extrapolation can be used on moving grids with local

refinement. With proper computation of the transformation metrics and the use

of TVD artificial viscosity, the MacCormack scheme is stable and is able to

solve problems with sharp discontinuities.
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The examples we have presented demonstrate the utility of these methods and

also point out their shortcomings. Of particular concern is the lack of any

error estimation near the boundaries, the poor error estimation near discon-

tinuities, and the need to constrain the mesh to obtain any accurate error esti-

mation. These problems must be solved in order to effectively utilize this

solution scheme and error estimation procedure with an adaptive technique.
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